




Figure 2. Log-frequency power spectrum of a mixed percussion recording.

Figure 3. Spectrogram reconstruction of the bass drum estimated by re-filtering the input spectrogram using ISA basis
functions.The function to the left is frequency mask component and the function across the top is the time masking component.



Figure 4. Masking functions and spectrogram reconstruction of the snare drum.

Figure 5. Masking functions and spectrogram reconstruction of the cow bell.



Figure 6. Separated audio signals using ISA basis functions with spectrogram re-filtering.

A. Independent Subspace Analysis within MPEG-7

The MPEG-7 standard consists of descriptors and description schemes that are defined by a modified version of XML schema
called the MPEG-7 description definition language (DDL). A large number of descriptors have been defined covering images,
audio, video and general multimedia usage. The DDL language ensures that media content description data may be shared
between applications in much the same way that sound files are exchanged using standard file formats. For example, an audio
spectrum is defined by a descriptor called AudioSpectrumEnvelope. To use the descriptor, data is instantiated using the
standardized DDL syntax. In this case, the spectrum data is stored as a series of vectors within the class.

The AudioSpectrumBasis descriptor contains basis functions that are used to project high-dimensional spectrum
descriptions into a low-dimensional representation contained by the AudioSpectrumProjection descriptor, see DDL
Example 1. These two sets of functions correspond to the time functions and frequency functions of ISA analysis described
above. The dimensionality of a spectrum is simply the number of channels of spectral data. In the example above, the
representation was used for describing independent component spectrograms for source mixture separation. The reduced
representation is also well suited for use with probability model classifiers that require input features to be of fewer than 10
dimensions for successful performance. The reduced dimension basis functions (time and frequency masks) behave as
uncorrelated descriptions of the input spectrogram with the features described much more efficiently than using the full
spectrogram data set. These features were found to exhibit superior performance in sound recognition tasks as we shall describe
later.

<AudioD xsi:type="AudioSpectrumBasisType" loEdge="62.5" hiEdge="8000"
          resolution="1/4 octave">
    <BasisFunctions>
      <Matrix dim="10 5">
        0.26 -0.05 0.01 -0.70 0.44
        0.34 0.09 0.21 -0.42 -0.05
        0.33 0.15 0.24 -0.05 -0.39
        0.33 0.15 0.24 -0.05 -0.39
        0.27 0.13 0.16 0.24 -0.04
        0.27 0.13 0.16 0.24 -0.04
        0.23 0.13 0.09 0.27 0.24
        0.20 0.13 0.04 0.22 0.40
        0.17 0.11 0.01 0.14 0.37

  0.33 -0.15 0.24 0.05 0.39



     </Matrix>
   </BasisFunctions>
</AudioD>

DDL Example 1. Description of five basis functions using AudioSpectrumBasisType. The description definition language is
based on XML schema with some extensions specific to MPEG-7. (The floating-point resolution has been truncated for clarity).

B. Independent Subspace Extraction Method

The extraction method for AudioSpectrumBasis and AudioSpectrumProjection is detailed within the MPEG-7
standard. It is considered that these steps must be used in extracting a reduced-dimension description in order to conform to the
standard. Within each step there is opportunity for alternate implementations. As such, the following procedure outlines the
standardized extraction method for ISA basis functions:

1. Power spectrum: instantiate an AudioSpectrumEnvelope descriptor using the extraction method defined in
AudioSpectrumEnvelopeType. The resulting data will be a SeriesOfVectors with M frames and N frequency bins.

2 Log-scale norming: for each spectral vector, x, in AudioSpectrumEnvelope, convert the power spectrum to a decibel
scale:
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where I(K) is the proportion of information retained for K basis functions and N is the total number of basis functions which is
also equal to the number of spectral bins. The SVD basis functions are stored in the columns of a matrix within the
AudioSpectrumBasisType descriptor.

6 Statistically independent basis (Optional): after extracting the reduced SVD basis, V, a further step consisting of basis
rotation to directions of maximal statistical independence is often desirable. This is necessary for displaying independent
components of a spectrogram and for any application requiring maximum separation of features.

To find a statistically independent basis using the basis functions obtained in step 4, use one of the well-known, widely published
independent component (ICA) algorithms such as INFOMAX, JADE or FastICA; (Bell and Sejnowski 1995; Cardoso and
Laheld 1996; Hyvarinen, 1999).

The ICA basis is the same size as the SVD basis and is stored in the columns of the matrix contained in the
AudioSpectrumBasisType descriptor. The retained information ratio, I(K),  is equivalent to the SVD when using the given
extraction method.
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F i g u r e  7 .  shows the extraction system diagram for both A u d i o S p e c t r u m B a s i s  a n d  A u d i o S p e c t r u m P r o j e c t i o n .  T h e

basis projection gives time masking functions that are combined with the spectrum basis functions to6reconstruct independent

spectrogram components. To perform extraction for S p e c t r u m B a s i s P r o j e c t i o n f o l l o w  s t e p s  1 - 3  d e s c r i b e d  a b o v e  f o r
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matrix with the basis vectors obtained in step 4 or, optionally, step 5. The method is the same for both SVD and ICA basis

functions:
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where Y is a matrix consisting of the reduced dimension features after projection of the spectrum against the basis V.
For independent spectrogram reconstruction, extract the non-normalized spectrum projection by skipping the normalization step
(2) in AudioSpectrumBasis extraction. Thus:

kk VXY =

Now, to reconstruct an indpendent spectrogram component use the individual vector pairs, corresponding to the Kth vector in
AudioSpectrumBasis and AudioSpectrumProjection, and apply the reconstruction equation:

+= kkk vyX

where the + operator indicates the transpose for SVD basis functions (which are orthonormal) or the pseudo-inverse for ICA
basis functions (non-orthogonal).

The method outlined above represents a powerful tool that can be used for many purposes. The extracted sources may be
subjected to further analysis such as tempo estimation, rhythm analysis or fundamental frequency extraction. For example, we
now consider how ISA features may be used for sound recognition and similarity judgements for general audio.

III. GENERALIZED SOUND RECOGNITION

A number of tools exist within the MPEG-7 framework for computing similarity between segments of audio. In this section we
describe tools for representing category concepts as well as tools for computing similarity in a general manner. The method
involves training statistical models to learn to recognize the classes of sound defined in a taxonomy.

A. Taxonomies
A taxonomy consists of a number of sound categories organized into a hierarchical tree. For example, voice, instruments,
environmental sounds, animals, etc. Each of these classes can be broken down further into more detailed descriptions such as:
female laughter, rain, explosions, birds, dogs, etc.

1 “Strings”

1.1 “Violin”

NT

1.2 “Fiddle”
UF

1.3 “Viola”

NT

0. “Musical instruments”

NT

2 “Brass”

NT

2.1 “Trumpet” 2.2 “Tuba”

NTNT

Figure 8. A controlled-term taxonomy of part of the Musical Instruments hierarchy

Figure 8 shows musical instrument controlled terms that are organized into a taxonomy with “Strings” and “Brass”. Each term
has at least one relation link to another term. By default, a contained term is considered a narrower term (NT) than the containing
term. However, in this example, “Fiddle” is defined as being a nearly synonymous with, but less preferable than, “Violin”. To
capture such structure, the following relations are available as part of the ControlledTerm description scheme:

• BT – Broader term. The related term is more general in meaning than the containing term.
• NT – Narrower term. The related term is more specific in meaning than the containing term.
• US – Use The related term is (nearly) synonymous with the current term but the related term is preferred to the current

term.
• UF – Use for. Use of the current term is preferred to the use of the (nearly) synonymous related term.



• RT – Related Term. Related term is not a synonym, quasi-synonym, broader or narrower term, but is associated with
the containing term.

The purpose of the taxonomy is to provide semantic relationships between categories. As the taxonomy gets larger and more
fully connected the utility of the category relationships increases. Figure 9 shows the taxonomy in Figure 8 combined into a
larger classification scheme including animal sounds, musical instruments, Foley sounds (sound effects for film and television),
and impact sounds. By descending the hierarchical tree we find that there are 17 leaf nodes in the taxonomy. By inference, a
sound segment that is classified in one of the leaf nodes inherits the category label of its parent node in the taxonomy. For
example, a sound classified as a “Dog Bark” also inherits the label “Animals”. We shall adhere to this taxonomy for illustrative
purposes only; MPEG-7 allows full flexibility in defining taxonomies using controlled terms and can be used to define much
larger taxonomies than the given example.

Strings

Violin

Music

Brass

 Trumpet
 Cello

Foley



2) Multi-dimensional Gaussian Distributions

The multi-dimensional Gaussian distribution is used for modeling the states. Gaussian distributions are parameterized by a 1 x n
vector of means, m, and an n x n covariance matrix, K, where n is the number of features (columns) in the sound observation
vectors. The expression for computation of probabilities for a random column vector, x, given the Gaussian parameters is:
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3) Continuous Hidden Markov Models
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-1.53  0.02  2.44  1.41 -0.30  1.69
-0.72 -0.21  1.41  2.27 -0.15  1.05
0.09  0.23 -0.30 -0.15  0.80  0.29
-1.26  0.17  1.69  1.05  0.29  2.24
</Covariance>
<State><Label>2</Label></State>
<!—Remaining states use same structures-- >
<\PobabilityModel>

DDL Example 2. Instantiation of a Probability Model in the MPEG-7 DDL language. The model parameters were extracted
using a maximum a posteriori estimator. The description scheme represents the initial state distribution, transition matrix, state
labels, and individual Gaussian means and covariance matrices for the states.

IV. SOUND CLASSIFICATION, SIMILARITY AND EXAMPLE SEARCH APPLICATIONS

A. Classification Application

We trained 19 HMMs, using MAP estimation, on a large database (1000+ sounds) divided into 19 sound classes as described by
the leaf nodes in the general sound taxonomy shown in Figure 9 above. The database was split into separate training and testing
data sets. That is, 70% of the sounds were used for training the HMM models and 30% were used to test the recognition
performance of the models on novel data. Each sound in the test set was presented to all 19 models in parallel, the HMM with the
maximum likelihood score, using a method called Viterbi decoding, was selected as the representative class for the test sound;
see Figure 11.



Table 1. Performance of 19 classifiers trained on 70% and cross-validated on 30% of a large sound database. The mean
recognition rate indicates high recognizer performance across all the models..

Model Name % Correct
Classification

 [1]  AltoFlute 100.00
 [2]  Birds 80.00
 [3]  Pianos (Bosendorfer) 100.00
 [4]  Cellos (Pizz and Bowed) 100.00
 [5]  Applause 83.30
 [6]  Dog Barks 100.00
 [7] English Horn 100.00
 [8]  Explosions 100.00
 [9]  Footsteps 90.90
[10] Glass Smashes 92.30
[11] Guitars 100.00
[12] Gun shots 92.30
[13] Shoes (squeaks) 100.00
[14] Laughter 94.40
[15] Telephones 66.70
[16] Trumpets 80.00
[17] Violins 83.30
[18] Male Speech 100.00
[19] Female Speech 97.00

Mean Recognition Rate 92.646

B. Generalized Sound Similarity
In addition to classification, it is often useful to obtain a measure of how close two given sounds are in some perceptual sense. It
is possible to leverage the internal, hidden, variables generated by an HMM in order to compare the evolution of two sounds
through the model’s state space. For each input query sound to a HMM, the output is a series of states through which sound
passed. Each sampled state is given a likelihood that is used to cumulatively compute the probability that the sound actually
belongs to the given model. The SoundModelStatePath descriptor contains the dynamic state path of a sound through a
HMM model. Sounds are indexed by segmentation into model states or by sampling of the state path at regular intervals. Figure
12 shows a spectrogram of a dog bark sound with the state path through the “DogBark” HMM shown below.

Figure 12. Dog bark spectrogram and the state path through the dog bark continuous hidden Markov model

The state path is an important method of description since it describes the evolution of a sound with respect to physical states.
The state path shown in the figure indicates physical states for the dog bark; there are clearly delimited onset, sustain and
termination/silent states. This is true of most sound classes; the individual states within the class can be inspected via the state
path representation and a useful semantic interpretation can often be inferred.





D. Non-Categorical Similarity Ratings
Using such similarity measures it is possible to automatically organize sonic materials for a composition. The examples given
above organize similarity rankings according to a taxonomy of categories. However, if a non-categorical interpretation of
similarity is required one may simply train a single HMM, with many states, using a wide variety of sounds. Similarity may then
proceed without category constraints by comparing state-path histograms in the large generalized HMM state space.

V. CONCLUSIONS

In this paper we have outlined some of the tools that are available within the MPEG-7 standard for managing complex sound
content. In the first part of the paper we presented independent subspace analysis as a method for performing analysis and re-
synthesis of individual sources in a mixed audio file. We also showed that ISA may be used to obtain statistically salient features
that may be applied with great generality to sound recognition and sound similarity tasks.

One of the major design criteria for the tools was the ability to analyze and represent a wide range of acoustic sources including
textures and mixtures of sound. The tools presented herein exhibited good performance on musical sounds as well as
traditionally non-musical sources such as vocal utterances, animal sounds, environmental sounds and sound effects. Amongst the
applications presented were robust sound recognition using trained probability model classifiers and sound similarity matching
using internal probability model state variables.

In conclusion, the description schemes and extractor methodologies outlined in this paper provide a consistent framework for
analyzing, indexing and querying sounds from a wide range of different classes. These tools have been made widely available as
a component of the reference software implementation of the MPEG-7 standard. It is hoped that the ability to manipulate sound
in novel ways and the ability to search for “sounds like” candidates in a large database of sounds will become important new
tools for sound-designers, composers and many other users of new music technology.
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